Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

i(0) → 0
+(0, y) → y
+(x, 0) → x
i(i(x)) → x
+(i(x), x) → 0
+(x, i(x)) → 0
i(+(x, y)) → +(i(x), i(y))
+(x, +(y, z)) → +(+(x, y), z)
+(+(x, i(y)), y) → x
+(+(x, y), i(y)) → x

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

i(0) → 0
+(0, y) → y
+(x, 0) → x
i(i(x)) → x
+(i(x), x) → 0
+(x, i(x)) → 0
i(+(x, y)) → +(i(x), i(y))
+(x, +(y, z)) → +(+(x, y), z)
+(+(x, i(y)), y) → x
+(+(x, y), i(y)) → x

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

+1(x, +(y, z)) → +1(x, y)
I(+(x, y)) → I(y)
I(+(x, y)) → I(x)
+1(x, +(y, z)) → +1(+(x, y), z)
I(+(x, y)) → +1(i(x), i(y))

The TRS R consists of the following rules:

i(0) → 0
+(0, y) → y
+(x, 0) → x
i(i(x)) → x
+(i(x), x) → 0
+(x, i(x)) → 0
i(+(x, y)) → +(i(x), i(y))
+(x, +(y, z)) → +(+(x, y), z)
+(+(x, i(y)), y) → x
+(+(x, y), i(y)) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

+1(x, +(y, z)) → +1(x, y)
I(+(x, y)) → I(y)
I(+(x, y)) → I(x)
+1(x, +(y, z)) → +1(+(x, y), z)
I(+(x, y)) → +1(i(x), i(y))

The TRS R consists of the following rules:

i(0) → 0
+(0, y) → y
+(x, 0) → x
i(i(x)) → x
+(i(x), x) → 0
+(x, i(x)) → 0
i(+(x, y)) → +(i(x), i(y))
+(x, +(y, z)) → +(+(x, y), z)
+(+(x, i(y)), y) → x
+(+(x, y), i(y)) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

+1(x, +(y, z)) → +1(x, y)
+1(x, +(y, z)) → +1(+(x, y), z)

The TRS R consists of the following rules:

i(0) → 0
+(0, y) → y
+(x, 0) → x
i(i(x)) → x
+(i(x), x) → 0
+(x, i(x)) → 0
i(+(x, y)) → +(i(x), i(y))
+(x, +(y, z)) → +(+(x, y), z)
+(+(x, i(y)), y) → x
+(+(x, y), i(y)) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


+1(x, +(y, z)) → +1(x, y)
+1(x, +(y, z)) → +1(+(x, y), z)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(i(x1)) = 1   
POL(0) = 3/4   
POL(+1(x1, x2)) = (1/4)x_2   
POL(+(x1, x2)) = 9/4 + (2)x_1 + x_2   
The value of delta used in the strict ordering is 9/16.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

i(0) → 0
+(0, y) → y
+(x, 0) → x
i(i(x)) → x
+(i(x), x) → 0
+(x, i(x)) → 0
i(+(x, y)) → +(i(x), i(y))
+(x, +(y, z)) → +(+(x, y), z)
+(+(x, i(y)), y) → x
+(+(x, y), i(y)) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

I(+(x, y)) → I(y)
I(+(x, y)) → I(x)

The TRS R consists of the following rules:

i(0) → 0
+(0, y) → y
+(x, 0) → x
i(i(x)) → x
+(i(x), x) → 0
+(x, i(x)) → 0
i(+(x, y)) → +(i(x), i(y))
+(x, +(y, z)) → +(+(x, y), z)
+(+(x, i(y)), y) → x
+(+(x, y), i(y)) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


I(+(x, y)) → I(y)
I(+(x, y)) → I(x)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(I(x1)) = (2)x_1   
POL(+(x1, x2)) = 1/4 + (5/2)x_1 + (5/2)x_2   
The value of delta used in the strict ordering is 1/2.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

i(0) → 0
+(0, y) → y
+(x, 0) → x
i(i(x)) → x
+(i(x), x) → 0
+(x, i(x)) → 0
i(+(x, y)) → +(i(x), i(y))
+(x, +(y, z)) → +(+(x, y), z)
+(+(x, i(y)), y) → x
+(+(x, y), i(y)) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.